Methods

Results

Comparisons to Experiment

Additional Results

Summary 000

Quantum Dynamics of H_2 on Cu(111) at 925 K: Recent Developments of the Static Corrugation Model

Bauke Smits

Theoretical Chemistry Leiden University

SDSS 2023 Oktober 7, 2023

0/24

Methods	Results	
0000	0000	

Heterogeneous catalysis is an important facet of modern life.

1 Haber-Bosch process: fertilizer

Introduction

- N₂ dissociation the rate-limiting step.
- Fe catalyst (+ promotors)

2 Steam reforming: H₂ production

- CH₄ dissociation the rate-limiting step.
- Ni catalyst (+ promotors)

3 Proton exchange membrane fuel cell

- H₂ dissociation the rate-limiting step.
- Pt catalyst (+ promotors)

 $N_2 + 3 \; H_2 \longrightarrow 2 \; NH_3$

 $CH_4 + H_2O \longrightarrow CO + 3 \; H_2$

 $2 \; H_2 + O_2 \longrightarrow 2 \; H_2 O$

Methods

Introduction

Results

Comparisons to Experiment

Additional Results

Summary 000

Heterogeneous catalysis is an important facet of modern life.

- 1 Haber-Bosch process: fertilizer
 - N₂ dissociation the rate-limiting step.
 - Fe catalyst (+ promotors)
- 2 Steam reforming: H₂ production
 - CH₄ dissociation the rate-limiting step.
 - Ni catalyst (+ promotors)
- 3 Proton exchange membrane fuel cell
 - H₂ dissociation the rate-limiting step.
 - Pt catalyst (+ promotors)

 $N_2 + 3 \text{ H}_2 \xrightarrow{\textit{Fe}} 2 \text{ NH}_3$

 $CH_4 + H_2O \xrightarrow{\textit{Ni}} CO + 3 \text{ } H_2$

 $\mathbf{2} \; \mathbf{H_2} + \mathbf{O_2} \xrightarrow{\mathit{Pt}} \mathbf{2} \; \mathbf{H_2O}$

(A) Deterribet

1/24

Results

Comparisons to Experiment

Additional Results

Summary 000

Heterogeneous catalysis is an important facet of modern life.

1 Haber-Bosch process: fertilizer

Methods

- N₂ dissociation the rate-limiting step.
- Fe catalyst (+ promotors), 600 K
- 2 Steam reforming: H₂ production
 - CH₄ dissociation the rate-limiting step.
 - Ni catalyst (+ promotors), 1000 K
- 3 Proton exchange membrane fuel cell
 - H₂ dissociation the rate-limiting step.
 - Pt catalyst (+ promotors), 350 K
 - Theory often assumes a perfect, '0 K' lattice.

 $N_2 + 3 \text{ H}_2 \xrightarrow{\textit{Fe}} 2 \text{ NH}_3$

 $CH_4 + H_2O \xrightarrow{\textit{Ni}} CO + 3 \; H_2$

 $\mathbf{2} \; \mathbf{H_2} + \mathbf{O_2} \xrightarrow{Pt} \mathbf{2} \; \mathbf{H_2O}$

Results

Comparisons to Experiment

Additional Results

Summary 000

Heterogeneous catalysis is an important facet of modern life.

1 Haber-Bosch process: fertilizer

Methods

- N₂ dissociation the rate-limiting step.
- Fe catalyst (+ promotors), 600 K
- 2 Steam reforming: H₂ production
 - CH₄ dissociation the rate-limiting step.
 - Ni catalyst (+ promotors), 1000 K
- 3 Proton exchange membrane fuel cell
 - H₂ dissociation the rate-limiting step.
 - Pt catalyst (+ promotors), 350 K

 $N_2 + 3 \text{ H}_2 \xrightarrow{\textit{Fe}} 2 \text{ NH}_3$

 $CH_4 + H_2O \xrightarrow{\textit{Ni}} CO + 3 \; H_2$

 $\mathbf{2} \; \mathbf{H_2} + \mathbf{O_2} \xrightarrow{\mathit{Pt}} \mathbf{2} \; \mathbf{H_2O}$

• Theory often assumes a perfect, '0 K' lattice.

First quantum dynamical simulation of H₂ on thermally distorted surface

Universiteit Leiden Territoria

Methods

Comparisons to Experiment

Additional Results

Summary 000

System of choice: H_2 on Cu(111)

- H₂ (and D₂) dissociation on a Cu(111) surface is a commonly used benchmark system.
 - A lot of experimental and theoretical data.

Results

- Perfect lattice potential reproduces experiment to within chemical accuracy.
 - Potential energy surface (PES) fitted to SRP-DFT using corrugation reducing procedure (CRP).
 - Surface atoms fixed in their perfect crystal lattice positions.
 - Born-Oppenheimer Static Surface (BOSS).
- Static corrugation method (SCM) statically includes surface temperature effects.

Methods

Comparisons to Experiment

Additional Results

Summary 000

System of choice: H_2 on Cu(111)

- H₂ (and D₂) dissociation on a Cu(111) surface is a commonly used benchmark system.
 - A lot of experimental and theoretical data.

Results

- Perfect lattice potential reproduces experiment to within chemical accuracy.
 - Potential energy surface (PES) fitted to SRP-DFT using corrugation reducing procedure (CRP).
 - Surface atoms fixed in their perfect crystal lattice positions.
 - Born-Oppenheimer Static Surface (BOSS).
- Static corrugation method (SCM) statically includes surface temperature effects.

Methods 0000 Comparisons to Experiment

Additional Results

Summary 000

System of choice: H_2 on Cu(111)

- H₂ (and D₂) dissociation on a Cu(111) surface is a commonly used benchmark system.
 - A lot of experimental and theoretical data.

Results

- Perfect lattice potential reproduces experiment to within chemical accuracy.
 - Potential energy surface (PES) fitted to SRP-DFT using corrugation reducing procedure (CRP).
 - Surface atoms fixed in their perfect crystal lattice positions.
 - Born-Oppenheimer Static Surface (BOSS).
- Static corrugation method (SCM) statically includes surface temperature effects.

Methods • · · · · Results

Comparisons to Experiment

Additional Results

Summary 000

Static Corrugation Model (SCM)

 $(2) + \sum_{i}^{\overrightarrow{r}} \sum_{j}^{\overrightarrow{q}} \left[V_{H-Cu}(|\overrightarrow{r_{i}} - \overrightarrow{q_{j}}|) - V_{H-Cu}(|\overrightarrow{r}^{id}(\overrightarrow{r}) - \overrightarrow{q_{j}}^{id}|) \right]$

・ロト・A型ト・A目ト・A目ト・Aロト

Methods ○●○○ Results

Comparisons to Experiment

Additional Results

Summary 000

Quantum Dynamics Time-dependent wave packet (TDWP) approach

- Propagate H₂ described by WP on 6D PES.
- 2 Some of the WP scatters back (in different states).
- Analyse scattered WP and find the probabilities for each state.
- 4 $P_{reac} = (1 P_{scattered})$

Methods

0.000

Results

Comparisons to Experiment

Additional Results

Summarv

Quantum Dynamics Time-dependent wave packet (TDWP) approach

- 3 Analyse scattered WP and find the probabilities for each state.
- 4 $P_{reac} = (1 P_{scattered})$

Methods

Results

Comparisons to Experiment

Additional Results

Summary 000

> Universiteit Leiden

うくで 5/24

Fourier Grid Hamiltonian Method v=0l=0v=0|=1v=0l=2v=1|=0

Quasi-classical trajectories

- Start with a quantized rovibrational state.
- 2 Molecules freely vibrate and rotate during **classical** dynamics.
- 3 Scattered molecules are binned to the closest (in rot. energy) allowed rotational state.
- 4 Molecules are binned to the closest (in total energy) rovibrational state with the same rot. state.

Results

Comparisons to Experiment

Additional Results

Summarv

Quasi-classical trajectories

- Molecules freely vibrate and rotate during classical dynamics.

Universiteit Leiden

Methods

Results Co

Comparisons to Experiment

Additional Results

Summary 000

Methods

0000

Introduction

Quasi-classical trajectories

- Start with a quantized rovibrational state.
- 2 Molecules freely vibrate and rotate during **classical** dynamics.
- 3 Scattered molecules are binned to the closest (in rot. energy) allowed rotational state.
- 4 Molecules are binned to the closest (in total energy) rovibrational state with the same rot. state.

Summary 000

Quasi-classical trajectories

- Start with a quantized rovibrational state.
- 2 Molecules freely vibrate and rotate during **classical** dynamics.
- 3 Scattered molecules are binned to the closest (in rot. energy) allowed rotational state.
- 4 Molecules are binned to the closest (in total energy) rovibrational state with the same rot. state.

Universiteit Leiden

Introduction

Quasi-classical trajectories

Additional Results

Summarv

- Start with a quantized rovibrational state.
- 2 Molecules freely vibrate and rotate during **classical** dynamics.
- 3 Scattered molecules are binned to the closest (in rot. energy) allowed rotational state.
- 4 Molecules are binned to the closest (in total energy) rovibrational state with the same rot. state.

Methods

000

Results

Comparisons to Experiment

Additional Results

Summarv

Methods - A Summary

Born-Oppenheimer Static Surface (BOSS)

- PES from SRP48 DFT functional.
- Surface static in its ideal configuration.

Static Corrugation Model (SCM)

- Expand BOSS PES with SCM coupling potential.

Quantum Dynamics (QD)

• Quasi-Classical Dynamics (QCD)

Methods

000

Comparisons to Experiment

Additional Results

Summary 000

Methods - A Summary

• Born-Oppenheimer Static Surface (BOSS)

Results

- PES from SRP48 DFT functional.
- Surface static in its ideal configuration.

• Static Corrugation Model (SCM)

- Expand BOSS PES with SCM coupling potential.
- Surface static, but distorted at 925 K.

• Quantum Dynamics (QD)

- Time-dependent wave packet approach
- WPs split into several energy ranges.
- Monte-Carlo sampled distorted surface using 104 configurations

• Quasi-Classical Dynamics (QCD)

- Classical dynamics with initial quantised states.
- 50.000 trajectories per incidence energy.
- Distorted surface randomly chosen every trajectory.

Methods

000

Comparisons to Experiment

Additional Results

Summary 000

Methods - A Summary

• Born-Oppenheimer Static Surface (BOSS)

Results

- PES from SRP48 DFT functional.
- Surface static in its ideal configuration.

• Static Corrugation Model (SCM)

- Expand BOSS PES with SCM coupling potential.
- Surface static, but distorted at 925 K.

• Quantum Dynamics (QD)

- Time-dependent wave packet approach
- WPs split into several energy ranges.
- Monte-Carlo sampled distorted surface using 104 configurations.

• Quasi-Classical Dynamics (QCD)

- Classical dynamics with initial quantised states.
- 50.000 trajectories per incidence energy.
- Distorted surface randomly chosen every trajectory.

6/24

Methods

000

Comparisons to Experiment

Additional Results

Summary 000

Methods - A Summary

• Born-Oppenheimer Static Surface (BOSS)

Results

- PES from SRP48 DFT functional.
- Surface static in its ideal configuration.

• Static Corrugation Model (SCM)

- Expand BOSS PES with SCM coupling potential.
- Surface static, but distorted at 925 K.

• Quantum Dynamics (QD)

- Time-dependent wave packet approach
- WPs split into several energy ranges.
- Monte-Carlo sampled distorted surface using 104 configurations.
- Quasi-Classical Dynamics (QCD)
 - Classical dynamics with initial quantised states.
 - 50.000 trajectories per incidence energy.
 - Distorted surface randomly chosen every trajectory.

6/24

Methods

Results

Comparisons to Experiment

Additional Results

Summary 000

Magnitude of error due to surface sampling

- QCD results averaged over 104 surfaces or random from dataset.
 - Quantifies error limited number of surfaces.
- Minor differences between sampling (QCD) and averaging (QD) of surfaces.
- SCM shows curve broadening.
- Good agreement between QD and QCD of BOSS and SCM.

Methods

Results

Comparisons to Experiment

Additional Results

Summary 000

Magnitude of error due to surface sampling

- QCD results averaged over 104 surfaces or random from dataset.
 - Quantifies error limited number of surfaces.
- Minor differences between sampling (QCD) and averaging (QD) of surfaces.
- SCM shows curve broadening.
- Good agreement between QD and QCD of BOSS and SCM.

Universited Leiden

Methods

Results

Comparisons to Experiment

Additional Results

Summary

Single Surface Comparisons

Full SCM Surface β Surface γ OCD Surface α Dissociation 0.8 • Results for single surface slabs. $H_2/Cu(111)$ Very reactive and non-reactive $\tilde{v}=0$ J=0 925K slabs. Reaction probability agreement **Rovibrationally Elastic Scattering** Reaction / 7.0 Reaction / Difference in scattering primarily 0.0 0.40.6 0.8 1.0Normal Incidence Energy (eV) Di Universiteit

Methods

Results

Comparisons to Experiment

Additional Results

Summary

Single Surface Comparisons

Additional Results

Summary 000

- Bridge-to-hollow site
 - Lowest reaction barrier.
- SCM barriers later in r.
- Little change in Z.
- Geometry around barrier varies.
 - Effect on rot. and vib. efficacies.

Additional Results

Summary 000

- Bridge-to-hollow site
 - Lowest reaction barrier.
- SCM barriers later in r.
- Little change in Z.
- Geometry around barrier varies.
 - Effect on rot. and vib. efficacies.

Additional Results

Summary 000

- Bridge-to-hollow site
 - Lowest reaction barrier.
- SCM barriers later in r.
- Little change in Z.
- Geometry around barrier varies.
 - Effect on rot. and vib. efficacies.

Introduction	
00	

- Top-to-fcc site
 - One of the higher barriers.

Methods

Results

- Variation in barrier location and height.
- Energetically higher barriers later in r and Z.

- Top-to-fcc site
 - One of the higher barriers.

Results

- Variation in barrier location and height.
- Energetically higher barriers later in r and Z.

Methods

Comparisons to Experiment

Additional Results

Summary 000

Comparisons to experiment

Compare to experimental results by Kaufmann *et al.* JCP, **148**, 194703 (2018): Associative desorption of hydrogen isotopologues from copper surfaces: Characterization of two reaction mechanisms

- Desorption experiments of $H_2/D_2/HD$ from Cu(111)/Cu(211).
 - Obtain state-selective time-of-flight spectra.

Results

- Direct inversion under detailed balance.
- Fit to ERF form + slow channel.
 - Exact W and E₀
 - Only relative saturation values.

$$P_{stick} = \frac{A}{2} \left[1 + \operatorname{erf} \left(\frac{E_{kin} - E_0}{W} \right) \right] + P_{stick}^{slow}$$

- A Saturation value
- E_0 Energy at half saturation
- W Width parameter

Universiteit Leiden Territoria

Methods

Comparisons to Experiment

Additional Results

Summary 000

Comparisons to experiment

Compare to experimental results by Kaufmann *et al.* JCP, **148**, 194703 (2018): Associative desorption of hydrogen isotopologues from copper surfaces: Characterization of two reaction mechanisms

- Desorption experiments of $H_2/D_2/HD$ from Cu(111)/Cu(211).
 - Obtain state-selective time-of-flight spectra.

Results

- Direct inversion under detailed balance.
- Fit to ERF form + slow channel.
 - Exact W and E₀
 - Only relative saturation values.

$$P_{stick} = rac{A}{2} \Big[1 + \operatorname{erf} \Big(rac{E_{kin} - E_0}{W} \Big) \Big] + P_{stick}^{slow}$$

- A Saturation value
- E_0 Energy at half saturation
- W Width parameter

Methods 0000 Comparisons to Experiment

Additional Results

Summary 000

Comparisons to experiment

Estimate saturation value with other data:

Results

- *A^{Min}* Beam adsorption experiments
 A^{Est} Theory results at max. energy
- A^{Max} Highest estimate encountered

- Exact W and E₀
- Only relative saturation values.

$$P_{stick} = rac{A}{2} \Big[1 + \operatorname{erf} \Big(rac{E_{kin} - E_0}{W} \Big) \Big] + P_{stick}^{slow}$$

- A Saturation value
- E_0 Energy at half saturation
- W Width parameter

Results

Methods

Comparisons to Experiment

Additional Results

Summary 000

Dissociative Chemisorption

- Some difference QD↔QCD for vib. excited states.
- Agreement with experiment mixed.
 - Good with estimated saturation for v=0.
 - Overestimate for v=1, J=2.
 - For v=1, J=0, good with low saturation.

Kaufmann et al., 2018

Smits & Somers, 2022

<ロ > < 昂 > < 臣 > < 臣 > 美国 の Q () 12/24

Results

Methods

Comparisons to Experiment

Additional Results

Summary 000

Dissociative Chemisorption

- Some difference QD↔QCD for vib. excited states.
- Agreement with experiment mixed.
 - Good with estimated saturation for v=0.
 - Overestimate for v=1, J=2.
 - For v=1, J=0, good with low saturation.

Kaufmann et al., 2018

Smits & Somers, 2022

< 교 > < 교 > < 고 > < 고 > < 고 > < 고 > < 고 > < 고 >
 < 12/24

Universited Leiden
Methods

Results

Comparisons to Experiment

Additional Results

Summary 000

Reaction - Logarithmic scale

- With logarithmic reaction scale, we can focus on curve onset.
- Broader curve onset of SCM matches experiment.
- QD results have unphysical shape at low reaction probability.
 - Noise due to timestep.

Methods

Results

Comparisons to Experiment

Additional Results

Summary 000

Reaction - Logarithmic scale

- With logarithmic reaction scale, we can focus on curve onset.
- Broader curve onset of SCM matches experiment.
- QD results have unphysical shape at low reaction probability.
 - Noise due to timestep.

14/24

Universitei Leiden

Sac

Summarv

Sac

14/24

Universitei Leiden

Summarv

nan

^{14/24}

Methods

Comparisons to Experiment

Additional Results

Summary

Time-of-Flight spectra

- Simulated time-of-flight spectra are a more direct comparison to experiment.
 - Remove uncertainty in experimental saturation value.
 - Introduce some errors due fitting *P*_{stick}.

Results

$$I(t) = K \cdot \exp\left(\frac{-E_n}{2k_b T_s}\right) \cdot \left(\frac{x}{t}\right)^4 \cdot P_{stick}(E_n)$$

with

Gompertz functionFive-parameter curve
$$P_{stick}(E_n) = A \cdot \exp\left[-\exp\left(-\frac{E_n - B}{C}\right)\right]$$
 $P_{stick}(E_n) = \frac{A \cdot \exp\left[-\exp\left(-\frac{E_n - B}{C}\right)\right]}{1 + \exp\left(-\frac{E_n - B_1}{C_1}\right)}$

Error function

$$P_{stick}(E_n) = rac{A}{2} \Big[1 + \operatorname{erf} \Big(rac{E_n - E_0}{W} \Big) \Big]$$

Methods

Comparisons to Experiment

Additional Results

Summary 000

Time-of-Flight spectra

- Simulated time-of-flight spectra are a more direct comparison to experiment.
 - Remove uncertainty in experimental saturation value.
 - Introduce some errors due fitting P_{stick}.

Results

$$I(t) = K \cdot \exp\left(\frac{-E_n}{2k_b T_s}\right) \cdot \left(\frac{x}{t}\right)^4 \cdot P_{slick}(E_n)$$

with

Gompertz functionFive-parameter curve
$$P_{stick}(E_n) = A \cdot \exp\left[-\exp\left(-\frac{E_n - B}{C}\right)\right]$$
 $P_{stick}(E_n) = \frac{A \cdot \exp\left[-\exp\left(-\frac{E_n - B}{C}\right)\right]}{1 + \exp\left(-\frac{E_n - B_1}{C_1}\right)}$ Error function

$$P_{stick}(E_n) = rac{A}{2} \Big[1 + \operatorname{erf} \Big(rac{E_n - E_0}{W} \Big) \Big]$$

Results

Methods

Comparisons to Experiment

Additional Results

Summary 000

Time-of-Flight spectra

OCD - BOSS OD - BOSS Experiment OCD - SCM OD - SCM v=0v=1J=0J=0h а units) Signal (arb. J=2d J=2с 7 9 6 8 9 11 Time-of-Flight (µs) Universiteit Leiden

- SCM broadens spectra.
 - Same as dissociation curves.
- Agreement between QD and QCD better for SCM than BOSS.
- SCM closer to experiment than BOSS (except v=1, J=2).

Kaufmann *et al.*, 2018 Smits & Somers, 2023

16/24

Methods

Results

Comparisons to Experiment

Additional Results

Summary

Time-of-Flight spectra

OCD - BOSS OD - BOSS Experiment OCD - SCM OD - SCM v=0v=1J=0J=0h а units) Signal (arb. J=2J=2с d 9 7 8 9 11 6 Time-of-Flight (µs) Universiteit Leiden

- SCM broadens spectra.
 - Same as dissociation curves.
- Agreement between QD and QCD better for SCM than BOSS.
- SCM closer to experiment than BOSS (except v=1, J=2).

Kaufmann *et al.*, 2018 Smits & Somers, 2023

16/24

Intr	od	u	cti	on	
00					

Methods

Comparisons to Experiment

Additional Results

Summary 000

Rotational and Vibrational Efficacies

- Efficacies (μ) describe the contribution of rot. and vib. energy to the reaction.
 - Fraction of rot/vib energy that can be used to overcome barrier.
 - Depends on geometry of the PES around the barrier.
- Calculated using the treshold offset (ΔS) method.

Results

• Ratio of curve onset change vs rovib. energy change.

$$\mu_{rot}(v, J) = \frac{\Delta S(v, J) - \Delta S(v, 0)}{E_{int}(v, J) - E_{int}(v, 0)} \text{ for } J > 0$$
$$\mu_{vib}(v, J) = \frac{\Delta S(v, 0) - \Delta S(0, 0)}{E_{int}(v, 0)} \text{ for } v > 0$$

(日)
 (1)

Introduction	
00	

Methods

Comparisons to Experiment

Additional Results

Summary

Rotational and Vibrational Efficacies

- Efficacies (μ) describe the contribution of rot. and vib. energy to the reaction.
 - Fraction of rot/vib energy that can be used to overcome barrier.
 - Depends on geometry of the PES around the barrier.
- Calculated using the treshold offset (ΔS) method.

Results

• Ratio of curve onset change vs rovib. energy change.

$$\mu_{rot}(v, J) = \frac{\Delta S(v, J) - \Delta S(v, 0)}{E_{int}(v, J) - E_{int}(v, 0)} \text{ for } J > 0$$

$$\mu_{vib}(v, J) = \frac{\Delta S(v, 0) - \Delta S(0, 0)}{E_{int}(v, 0) - E_{int}(0, 0)} \text{ for } v > 0$$

$$\prod_{j=0}^{Q} \sum_{l=0}^{Q} \sum_{j=0}^{V=0} \sum_{l=0}^{Q} \sum_{l$$

Introduction	
00	

Methods

Comparisons to Experiment

Additional Results

Summary 000

Rotational and Vibrational Efficacies

- Efficacies (μ) describe the contribution of rot. and vib. energy to the reaction.
 - Fraction of rot/vib energy that can be used to overcome barrier.
 - Depends on geometry of the PES around the barrier.
- Calculated using the treshold offset (ΔS) method.

Results

• Ratio of curve onset change vs rovib. energy change.

	Q	QD		D	Experiment
	BOSS	SCM	BOSS	SCM	Experiment
μ_{vi}	b 0.593	0.645	0.560	0.595	0.636

Additional Results

Summary 000

> Di Universiteit Leiden

Sac

18/24

- SCM always predicts slightly higher efficacies.
- Agreement between QD and QCD good.
- No "rotational cooling" in theory results.
- Good agreement with experiment at higher states.

소리는 사람은 사람은 사람은 모님

Additional Results

Summary 000

> Di Universiteit Leiden

> > 200

18/24

- SCM always predicts slightly higher efficacies.
- Agreement between QD and QCD good.
- No "rotational cooling" in theory results.
- Good agreement with experiment at higher states.

Results

Comparisons to Experiment

Additional Results

Summary 000

Rovibrationally elastic scattering

 Imperfections of the PES clear in BOSS results.

Methods

- Averaged out in SCM.
- Vib. ground state clear difference QD↔QCD.
- Vib. excited state better agreement.
 - Higher rovib. energy

Results

Comparisons to Experiment

Additional Results

Summary 000

Rovibrationally elastic scattering

 Imperfections of the PES clear in BOSS results.

Methods

- Averaged out in SCM.
- Vib. ground state clear difference QD↔QCD.
- Vib. excited state better agreement.
 - Higher rovib. energy

Limited Surface Degrees of Freedom

- Thermal surface effects modeled by displacing a few surface atoms.
 - Past models
 - Computationally cheap(er)
- Cu atom closest to impact site will have the biggest effect.
- Implement SCM, but with slabs of a few atoms.
 - Scale up number of atoms.
 - Get closer to 'real' surface.

20/24

Diversiteit Leiden

20/24

Limited Surface Degrees of Freedom

- Thermal surface effects modeled by displacing a few surface atoms.
 - Past models
 - Computationally cheap(er)
- Cu atom closest to impact site will have the biggest effect.
- Implement SCM, but with slabs of a few atoms.
 - Scale up number of atoms.
 - Get closer to 'real' surface.

Elastic scattering on specific surface slabs

One or three distorted surface atoms do not properly describe surface effects.

Smits & Somers, 2022

Methods 0000 Results

Comparisons to Experiment

Additional Results

Summary •00

Summary

- SCM improves agreement with experimental results.
- Accurate surface temperature effects for H₂ on Cu(111) at a **quantum dynamical** level with SCM.
 - 104 surface slabs enough for decent convergence of QD-SCM results.
 - QD and QCD reaction agree even for single distorted surface slabs.
- Agreement of simulated time-of-flight spectra demonstrates quality of theory.
 - More direct comparison to experiment.
 - Introduce error due to fitting.
- Theory does not predict "rotational cooling".
- Need at least 5 surface atoms to describe surface.

< (고) < (고) < (고) < (고) < (고) < (2)
 < (2) < (2)
 < (2)

Methods

Results

Comparisons to Experiment

Additional Results

Summary •00

Summary

- SCM improves agreement with experimental results.
- Accurate surface temperature effects for H₂ on Cu(111) at a **quantum dynamical** level with SCM.
 - 104 surface slabs enough for decent convergence of QD-SCM results.
 - QD and QCD reaction agree even for single distorted surface slabs.
- Agreement of simulated time-of-flight spectra demonstrates quality of theory.
 - More direct comparison to experiment.
 - Introduce error due to fitting.
- Theory does not predict "rotational cooling".
- Need at least 5 surface atoms to describe surface.

< (고) < (고) < (고) < (고) < (고) < (2)
 < (2) < (2)
 < (2)

Results

Methods

Comparisons to Experiment

Additional Results

Summary •00

Summary

- SCM improves agreement with experimental results.
- Accurate surface temperature effects for H₂ on Cu(111) at a **quantum dynamical** level with SCM.
 - 104 surface slabs enough for decent convergence of QD-SCM results.
 - QD and QCD reaction agree even for single distorted surface slabs.
- Agreement of simulated time-of-flight spectra demonstrates quality of theory.
 - More direct comparison to experiment.
 - Introduce error due to fitting.
- Theory does not predict "rotational cooling".
- Need at least 5 surface atoms to describe surface.

Results

Methods

Comparisons to Experiment

Additional Results

Summary •00

Summary

- SCM improves agreement with experimental results.
- Accurate surface temperature effects for H₂ on Cu(111) at a **quantum dynamical** level with SCM.
 - 104 surface slabs enough for decent convergence of QD-SCM results.
 - QD and QCD reaction agree even for single distorted surface slabs.
- Agreement of simulated time-of-flight spectra demonstrates quality of theory.
 - More direct comparison to experiment.
 - Introduce error due to fitting.
- Theory does not predict "rotational cooling".
- Need at least 5 surface atoms to describe surface.

Quantum effects for rovibrationally elastic scattering

Methods 0000 Results

Comparisons to Experiment

Additional Results

Summary

Acknowledgements

Mark Somers Geert-Jan Kroes

Mark Wijzenbroek Paul Spiering

Robert van Bree Leandra Litjens Ruard van Workum Sven Schwabe Daniel Auerbach Alec Wodtke

Methods

Results

Comparisons to Experiment

Additional Results

Summary

Quantum Dynamics of H_2 on Cu(111) at 925 K: Recent Developments of the Static Corrugation Model

Bauke Smits

Theoretical Chemistry Leiden University

SDSS 2023 Oktober 7, 2023

<ロ > < 部 > < 臣 > < 臣 > 三 = のへで 24/24
 Split-Operator Method
 Old Surface Generation
 Static Corrugation Model
 QD input parameters
 mJ Depedency
 Computational Details
 Displacements
 Binning

Split-Operator Method

$$\Psi(\vec{Q}; t_0 + \Delta t) = \\ \exp\left(-\frac{i}{2}K\Delta t\right) \exp\left(-iV(\vec{Q})\Delta t\right) \\ \exp\left(-\frac{i}{2}K\Delta t\right) \Psi(\vec{Q}; t_0) + O[(\Delta t)^3]$$

- *K* Kinetic part of Hamiltonian*V* Potential part of Hamiltonian
- \overrightarrow{Q} 6D position vector of H₂

Random displacements

Original way of generating SCM surface slabs.

- Surface atom displacements are modeled using a random displacement
- Each displacement is sampled from a Gaussian distribution with $\sigma = \sqrt{\frac{3B}{8\pi^2}}$
- B is the Debye-Waller factor for a specific surface temperature
 - · Obtained from fits to inelastic neutron scattering
- · Displacement assumed to be isotropic and bulk-like

Di Universitet

Switched Rydberg function: 2-body and effective 3-body

- 3-body and (refitted) 2-body potential.
 - 2-body potential only attractive at low H-Cu distances.
- 3-body potential attractive at higher H-Cu distances.

Switched Rydberg function: 2-body and effective 3-body

SCM thermally distorted surface slabs

1 Originally SCM slabs were generated with random displacement (RD-SCM).

- Total displacement from Gaussian distribution.
- Standard deviation from Debye-Waller factor based on T_s.
- Displacements isotropic and bulk-like.
- Thermal expansion coefficient from experiment.
- 2 EAM-SCM uses the embedded atom method (EAM) to generate surface slabs.
 - Displacements from classical dynamics using EAM potential.
 - Potential highly accurate, but unclear fitting pathway.
 - Not based on the same SRP48 functional as the PES and V_{coup}.

Split-Operator Method	Old Surface Generation	Static Corrugation Model	QD input parameters	mJ Depedency	Computational Details	Displacements	Binnir
0	0000	00000000	0	00	00	0000	0

SCM thermally distorted surface slabs

1 Originally SCM slabs were generated with random displacement (RD-SCM).

- Total displacement from Gaussian distribution.
- Standard deviation from Debye-Waller factor based on T_s.
- Displacements isotropic and bulk-like.
- Thermal expansion coefficient from experiment.
- EAM-SCM uses the embedded atom method (EAM) to generate surface slabs.
 - Displacements from classical dynamics using EAM potential.
 - Potential highly accurate, but unclear fitting pathway.
 - Not based on the same SRP48 functional as the PES and V_{coup}.

Embedded Atom Method

- Designed by Daw and Baskes in 1983 based on the quasiatom theory
 - 'A new means of calculating ground-state properties of realistic metal systems'
- Each atom is viewed as *embedded* in a host lattice containing all other atoms
 A pair-wise interaction to model the core-core repulsion

Embedded Atom Method

- Designed by Daw and Baskes in 1983 based on the quasiatom theory
 - 'A new means of calculating ground-state properties of realistic metal systems'
- Each atom is viewed as *embedded* in a host lattice containing all other atoms
 A pair-wise interaction to model the core-core repulsion

$$E_{\mathsf{EAM}} = \sum_{i} \left[F(n_i) + \frac{1}{2} \sum_{j \neq i} \phi(r_{ij}) \right]$$
$$n_i = \sum_{j \neq i} \rho(r_{ij})$$

 r_{ij} Distance atom i - j F(n) Embedding function $\rho(r)$ Density function $\phi(r)$ Pair function

Split-Operator Method of Surface Generation Static Corrugation Model OD input parameters mJ Depedency Computational Details Displacements Binnin ooo o

Embedded Atom Method

- Designed by Daw and Baskes in 1983 based on the quasiatom theory
 - 'A new means of calculating ground-state properties of realistic metal systems'
- 1 Each atom is viewed as *embedded* in a host lattice containing all other atoms
- 2 A pair-wise interaction to model the core-core repulsion

$$E_{\text{EAM}} = \sum_{i} \left[F(n_i) + \frac{1}{2} \sum_{j \neq i} \phi(r_{ij}) \right]$$
$$n_i = \sum_{j \neq i} \rho(r_{ij})$$

 r_{ij} Distance atom i - j F(n) Embedding function $\rho(r)$ Density function $\phi(r)$ Pair function

Split-Operator Method Old Surface Generation Static Corrugation Model QD input parameters •••••

mJ Depedency Computational Details Displacements

Di Universitet

Static Corrugation Model

We construct the full PES from three contributions:

 $V_{DET}(\overrightarrow{q}^{id}, \overrightarrow{q}, \overrightarrow{r}) = V_{DET}(\overrightarrow{q}^{id}, \overrightarrow{r}^{id}(\overrightarrow{r}))$ 1

Position surface atoms \overrightarrow{r} Position adsorbates (H₂)

Full CRP PES based on DFT with ideal, static surface approximation.
Split-Operator Method Old Surface Generation oco

Static Corrugation Model

mJ Depedency

We construct the full PES from three contributions:

$$\begin{split} I_{DFT}(\vec{q}^{id},\vec{q},\vec{r}) &= V_{DFT}(\vec{q}^{id},\vec{r}^{id}(\vec{r})) & 1 \\ &+ V_{coup}(\vec{q}^{id},\vec{q},\vec{r}) & 2 \\ &+ V_{strain}(\vec{q}^{id},\vec{q}) & 3 \end{split}$$

 \vec{q} Position surface atoms Position adsorbates (H₂)

Computational Details

Displacements

Binnir

Full CRP PES based on DFT with ideal, static surface approximation.

$$2 \sum_{i}^{\overrightarrow{r}} \sum_{j}^{\overrightarrow{q}} \left[V_{H-Cu}(|\overrightarrow{r_{i}} - \overrightarrow{q_{j}}|) - V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}}) - \overrightarrow{q_{j}}^{id}|) \right]$$

Wijzenbroek & Somers, 2012

・ロットを聞き、< 用き、< 用き、< 日き、< ののの

Static Corrugation Model

mJ Depedency

We construct the full PES from three contributions:

•••••

 $V_{DET}(\overrightarrow{q}^{id}, \overrightarrow{q}, \overrightarrow{r}) = V_{DET}(\overrightarrow{q}^{id}, \overrightarrow{r}^{id}(\overrightarrow{r}))$ $+ V_{\text{strain}}(\overrightarrow{q}^{id}, \overrightarrow{q})$ 3

Position surface atoms Position adsorbates (H_2)

Computational Details

Displacements

Di Universiteit Leiden

24/24

$$2\sum_{i}^{\overrightarrow{r}}\sum_{j}^{q}\left[V_{H-Cu}(|\overrightarrow{r_{i}}-\overrightarrow{q_{j}}|)-V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{j}})-\overrightarrow{q_{j}}^{id}|)\right]$$

Surface potential 3

•

Wijzenbroek & Somers, 2012

Static Corrugation Model

mJ Depedency

We construct the full PES from two contributions:

•••••

 $V_{DET}(\overrightarrow{q}^{id}, \overrightarrow{q}, \overrightarrow{r}) = V_{DET}(\overrightarrow{q}^{id}, \overrightarrow{r}^{id}(\overrightarrow{r}))$ + Vetrain (d d) 3

Position surface atoms Position adsorbates (H_2)

Computational Details

Displacements

$$2 \sum_{i}^{\overrightarrow{r}} \sum_{j}^{\overrightarrow{q}} \left[V_{H-Cu}(|\overrightarrow{r_{i}} - \overrightarrow{q_{j}}|) - V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}}) - \overrightarrow{q_{j}}^{id}|) \right]$$

- Surface potential
 - Constant with static surface.

Static Corrugation Model

mJ Depedency

We construct the full PES from two contributions:

•••••

$$V_{DFT}(\vec{q}^{id}, \vec{q}, \vec{r}) = V_{DFT}(\vec{q}^{id}, \vec{r}^{id}(\vec{r})) \quad 1 \\ + V_{coup}(\vec{q}^{id}, \vec{q}, \vec{r}) \quad 2 \\ + V_{strain}(\vec{q}^{id}, \vec{q}) \quad 3$$

Position surface atoms \overrightarrow{r} Position adsorbates (H₂)

Computational Details

Displacements

Di Universitet

24/24

Full CRP PES based on DFT with ideal, static surface approximation.

$$\sum_{i} \sum_{j}^{\overrightarrow{q}} \sum_{j}^{\overrightarrow{q}} \left[V_{H-Cu}(|\overrightarrow{r_{i}} - \overrightarrow{q_{j}}|) - V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}}) - \overrightarrow{q_{j}}^{id}|) \right]$$

- - Constant with static surface.

Wijzenbroek & Somers, 2012

Split-Operator Method	Old Surface Generation	Static Corrugation Model	QD input parameters	mJ Depedency	Computational Details	Displacements	Binnir
0	0000	00000000	0	00	00	0000	0

First version of V_{coup}: 2-body potential

$$\sum_{i}^{\overrightarrow{r}}\sum_{j}^{\overrightarrow{q}}\left[V_{H-Cu}(|\overrightarrow{r_{i}}-\overrightarrow{q_{j}}|)-V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}})-\overrightarrow{q_{j}}^{id}|)\right]$$

Switched Rydberg function: $V_{H-Cu}(R) = (1 - \rho(R))V(R) + \rho(R)V(P_7)$

$$V(R) = -\mathrm{e}^{-\mathrm{P}_4(\mathrm{R}-\mathrm{P}_5)}igg(\sum_{\mathrm{k}=0}^3\mathrm{P}_\mathrm{k}(\mathrm{R}-\mathrm{P}_5)^\mathrm{k}igg)$$

$$\rho(R) = \begin{cases} 0 & \text{for } R < P_6 \\ \frac{1}{2} \cos\left(\frac{\pi(R - P_7)}{P_7 - P_6}\right) + \frac{1}{2} & \text{for } P_6 \le R \le P_7 \\ 1 & \text{for } R > P_7 \end{cases}$$

Wijzenbroek & Somers, 2012

・ロト・A型ト・モン・モン・ビー・Oへの

Split-Operator Method	Old Surface Generation	Static Corrugation Model	QD input parameters	mJ Depedency	Computational Details	Displacements	Binnir
0	0000	00000000	0	00	00	0000	0

First version of V_{coup}: 2-body potential

$$\sum_{i}^{\overrightarrow{r}}\sum_{j}^{\overrightarrow{q}}\left[V_{H-Cu}(|\overrightarrow{r_{i}}-\overrightarrow{q_{j}}|)-V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}})-\overrightarrow{q_{j}}^{id}|)\right]$$

Switched Rydberg function: $V_{H-Cu}(R) = (1 - \rho(R))V(R) + \rho(R)V(P_7)$

$$V(R) = -\mathrm{e}^{-\mathrm{P}_4(\mathrm{R}-\mathrm{P}_5)}igg(\sum_{k=0}^3\mathrm{P}_k(\mathrm{R}-\mathrm{P}_5)^kigg)$$

$$\rho(R) = \begin{cases} 0 & \text{for } R < P_6 \\ \frac{1}{2} \cos\left(\frac{\pi(R - P_7)}{P_7 - P_6}\right) + \frac{1}{2} & \text{for } P_6 \le R \le P_7 \\ 1 & \text{for } R > P_7 \end{cases}$$

Wijzenbroek & Somers, 2012

24/24

Split-Operator Method	Old Surface Generation	Static Corrugation Model	QD input parameters	mJ Depedency	Computational Details	Displacements	Binnir
0	0000	00000000	0	00	00	0000	0

First version of V_{coup}: 2-body potential

$$\sum_{i}^{\overrightarrow{r}}\sum_{j}^{\overrightarrow{q}}\left[V_{H-Cu}(|\overrightarrow{r_{i}}-\overrightarrow{q_{j}}|)-V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}})-\overrightarrow{q_{j}}^{id}|)\right]$$

Switched Rydberg function: $V_{\mu c \mu}(R) = (1 - \rho(R))V(R) + \rho(R)V(P_7)$ $V(\boldsymbol{R}) = -\mathrm{e}^{-\mathrm{P}_4(\mathrm{R}-\mathrm{P}_5)} igg(\sum^3 \mathrm{P}_k(\mathrm{R}-\mathrm{P}_5)^kigg)$ $\rho(R) = \begin{cases}
0 & \text{for } R < P_6 \\
\frac{1}{2} \cos\left(\frac{\pi(R - P_7)}{P_7 - P_6}\right) + \frac{1}{2} & \text{for } P_6 \le R \le P_7 \\
1 & \text{for } R > P_7
\end{cases}$

Wijzenbroek & Somers, 2012

(日) 《四) 《王》 《王》 《四)

Di Universitet

H₂-bond adapted Rydberg function: Effective 3-body

$$P_{i} = \begin{cases} P_{i,a}R_{H-H}^{min} + P_{i,b} & \text{for } R_{H-H} < R_{H-H}^{min} \\ P_{i,a}R_{H-H} + P_{i,b} & \text{for } R_{H-H}^{min} \le R_{H-H} \le R_{H-H}^{max} \\ P_{i,a}R_{H-H}^{max} + P_{i,b} & \text{for } R_{H-H} < R_{H-H}^{max} \end{cases}$$

- An effective 3-body (H-H-Cu) coupling potential.
 - Designed by Paul Spiering during his master's project.
- A larger set of DFT data allowed for a better fit.
 - 15113 configurations vs 153 configurations.
- Support for different set of parameters for different Cu layers.
 - Only top two layers used for SCM.
 - No sensible results when separate parameters are fitted per layer.

Split-Operator Method old Surface Generation Static Corrugation Model OD input parameters of old Surface Generation Static Corrugation Model OD input parameters of old Surface Generation Support Sup

H₂-bond adapted Rydberg function: Effective 3-body

$$P_{i} = \begin{cases} P_{i,a}R_{H-H}^{min} + P_{i,b} & \text{for } R_{H-H} < R_{H-H}^{min} \\ P_{i,a}R_{H-H} + P_{i,b} & \text{for } R_{H-H}^{min} \le R_{H-H} \le R_{H-H}^{max} \\ P_{i,a}R_{H-H}^{max} + P_{i,b} & \text{for } R_{H-H} < R_{H-H}^{max} \end{cases}$$

- An effective 3-body (H-H-Cu) coupling potential.
 - Designed by Paul Spiering during his master's project.
- A larger set of DFT data allowed for a better fit.
 - 15113 configurations vs 153 configurations.
- Support for different set of parameters for different Cu layers.
 - Only top two layers used for SCM.
 - No sensible results when separate parameters are fitted per layer.

H₂-bond adapted Rydberg function: Effective 3-body

$$P_{i} = \begin{cases} P_{i,a}R_{H-H}^{min} + P_{i,b} & \text{for } R_{H-H} < R_{H-H}^{min} \\ P_{i,a}R_{H-H} + P_{i,b} & \text{for } R_{H-H}^{min} \le R_{H-H} \le R_{H-H}^{max} \\ P_{i,a}R_{H-H}^{max} + P_{i,b} & \text{for } R_{H-H} < R_{H-H}^{max} \end{cases}$$

- An effective 3-body (H-H-Cu) coupling potential.
 - Designed by Paul Spiering during his master's project.
- A larger set of DFT data allowed for a better fit.
 - 15113 configurations vs 153 configurations.
- Support for different set of parameters for different Cu layers.
 - Only top two layers used for SCM.
 - No sensible results when separate parameters are fitted per layer.

Split-Operator Method o
Old Surface Generation
Static Corrugation Model
OD
Diput parameters
o
Diput parameters
Dipu

Correction to thermal lattice expansion

$$\sum_{i}^{\overrightarrow{r}}\sum_{j}^{\overrightarrow{q}}\left[V_{H-Cu}(|\overrightarrow{r_{i}}-\overrightarrow{q_{j}}|)-V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}})-\overrightarrow{q_{j}}^{id}|)\right]$$

Scale the center-of-mass coordinates of the H_2 to their 'ideal lattice' positions.

- Along the lattice vectors.
- Ensures rovib. state is unaffected.

Correction to thermal lattice expansion

$$\sum_{i}^{\overrightarrow{r}}\sum_{j}^{\overrightarrow{q}}\left[V_{H-Cu}(|\overrightarrow{r_{i}}-\overrightarrow{q_{j}}|)-V_{H-Cu}(|\overrightarrow{r_{i}}^{id}(\overrightarrow{r_{i}})-\overrightarrow{q_{j}}^{id}|)\right]$$

Scale the center-of-mass coordinates of the H_2 to their 'ideal lattice' positions.

- Along the lattice vectors.
- Ensures rovib. state is unaffected.

Distorted Surface Generation

- Generate surface configurations using molecular dynamics.
- Embedded Atom Method (EAM) potential.
- Database of 25.000 configurations from 1000 MD traces.

Distorted Surface Generation

- Generate surface configurations using molecular dynamics.
- Embedded Atom Method (EAM) potential.
- Database of 25.000 configurations from 1000 MD traces.

$$E_{\text{EAM}} = \sum_{i} \left[F(n_i) + \frac{1}{2} \sum_{j \neq i} \phi(r_{ij}) \right]$$
$$n_i = \sum_{j \neq i} \rho(r_{ij})$$

Daw & Baskes, 1983 Sheng *et al.*, 2011

- *r_{ij}* Distance atom i j
- F(n) Embedding function
- $\rho(r)$ Density function
- $\phi(r)$ Pair function

Split-Operator Method Old Surface Generation Static Corrugation Model

0000000000

QD input parameters

mJ Depedency Computational Details Displacements Binnir

Universite Leiden

Failure of classical MD

- MD does not always work for surface generation.
- At low T_s, the thermostat extracts zero-point energy.
- Implicit use of Maxwell-Boltzmann distribution for phonons.
 - Actually need Bose-Einstein statistics for bosons.

https://sites.google.com/site/eampotentials/Cu

Sheng et al., 2011

Split-Operator Method old Surface Generation old Surface Generation

Beyond the static surface

Using the EAM to describe the surface during (classical) dynamics, we can investigate energy exchange.

- 1 CRP PES describes potential on adsorbate.
- 2 Use the EAM as the potential for a fully dynamic surface slab.
- 3 SCM coupling potential describes effect of distorted surface on H₂.
 - Also the full effect of the H₂ on the surface atoms.
- Initialise each surface configuration from EAM generated traces.
 - Position and momentum
- Much more computationally intensive \rightarrow over 200 DoF.

Split-Operator Method	Old Surface Generation	Static Corrugation Model	QD input parameters	mJ Depedency	Computational Details	Displacements	Binnir
0	0000	0000000000	0	00	00	0000	0

Beyond the static surface

Datversitet

24/24

Using the EAM to describe the surface during (classical) dynamics, we can investigate energy exchange.

- 1 CRP PES describes potential on adsorbate.
- 2 Use the EAM as the potential for a fully dynamic surface slab.
- 3 SCM coupling potential describes effect of distorted surface on H₂.
 - Also the full effect of the H_2 on the surface atoms.
- Initialise each surface configuration from EAM generated traces.
 - Position and momentum
- Much more computationally intensive \rightarrow over 200 DoF.

Split-Operator Method	Old Surface Generation	Static Corrugation Model	QD input parameters	mJ Depedency	Computational Details	Displacements	Binnir
0	0000	0000000000	0	00	00	0000	0

Beyond the static surface

Datversitet

24/24

Using the EAM to describe the surface during (classical) dynamics, we can investigate energy exchange.

- 1 CRP PES describes potential on adsorbate.
- 2 Use the EAM as the potential for a fully dynamic surface slab.
- 3 SCM coupling potential describes effect of distorted surface on H₂.
 - Also the full effect of the H₂ on the surface atoms.
- Initialise each surface configuration from EAM generated traces.
 - Position and momentum
- Much more computationally intensive \rightarrow over 200 DoF.

DCM

୬ ଏ (୦ 24/24

Split-Operator Method	Old Surface Generation	Static Corrugatio	on Model	QD input parameter	rs mJ De	pedency Grid	Computational Detail	s Displacements	Binnir
Ŭ	Energy range (eV)	0.25-0.70	0.65-1.0	0 0.10-0.30	0.25-0.65	0.60-1.0	5 1.00-1.40	0000	0
	Z _{start} (a ₀)	-1.0 256	-1.0 256	-1.0 180	-1.0 180	-1.0 256	-1.0 256		
	N _z	180	180	128	128	180	240		
	$\Delta Z(a_0)$	0.15	0.15	0.15	0.15	0.10	0.10		
	$Z_{ana}(a_0)$	12.05	12.05	9.20	9.20	9.20	9.20		
	R_{start} (a ₀)	0.60	0.60	0.60	0.60	0.60	0.60		
	Nr	64	64	64	64	64	64		
	ΔR	0.15	0.15	0.15	0.15	0.15	0.15		
	Nx	24	24	24	24	24	24		
	Ny	24	24	24	24	24	24		
	Max. J in basis set	18	18	18	18	18	18		
	Max. m_J in basis s	et 12	12	12	12	12	12		
	SCM cutoff (a_0)	16.0	16.0	16.0	16.0	16.0	16.0		
		potentiais	10.00	0.050	0.050				
	Z_{CAP}^{CAP} start (a ₀)	12.20	12.20	9.350	9.350	9.300	9.300		
	$Z_{a_0}^{CAP}$ end (a_0)	25.85	25.85	18.05	18.05	16.90	22.90		
	Z ^{CAP} optimum (eV) 0.125	0.325	0.050	0.125	0.300	0.500		
	Z ^{CAP} start (a ₀)	31.95	31.95	17.00	17.00	17.40	19.00		
	Z_{spec}^{CAP} end (a ₀)	37.25	37.25	25.85	25.85	24.50	24.50		
	Z ^{CAP} optimum (eV) 0.125	0.325	0.050	0.125	0.300	0.500		
	$R^{\widetilde{CAP}}$ start (a ₀)	4.200	4.200	4.200	4.200	4.200	4.200		
	R ^{CAP} end (a ₀)	10.05	10.05	10.05	10.05	10.05	10.05		
	R ^{CAP} optimum (eV	() 0.100	0.100	0.100	0.100	0.100	0.100		
	Propagation	,							
	$\Delta t (\hbar/E_h)$	2.5	2.5	1.5	1.5	1.5	1.5		
	$t_f (\hbar/E_h)$	45000	45000	60000	45000	30000	30000		
	Initial wave packet							æ	ii Universiteit
	E _{min} (eV)	0.25	0.65	0.10	0.25	0.60	1.00	0.	Leiden
	E _{max} (eV)	0.70	1.00	0.30	0.65	1.05	1.40		200
	Z ₀ (a ₀)	21.95	21.95	13.10	13.10	13.30	14.10		

24/24

mJ dependency? - BOSS

mJ dependency? - EAM-SCM

୬ < ୯ 24/24

Computational details - Slab generation

1 Equilibrate bulk using NVT (Velocity-Verlet)

- Berendsen or Langevin thermostat
- 5 fs stepsize
- Lattice constant from many bulk relaxations
- Verify bulk stability in NVE (Bulirsch-Stoer)
- 3 Equilibrate slab using NVT with static layers
 - No volume rescaling
- 4 Verify slab stability in NVE
- 5 Determine 'perfect' lattice positions using NVE
- 6 Generate surface trace

Computational details - Slab generation

1 Equilibrate bulk using NVT (Velocity-Verlet)

- Berendsen or Langevin thermostat
- 5 fs stepsize
- Lattice constant from many bulk relaxations
- 2 Verify bulk stability in NVE (Bulirsch-Stoer)
- 3 Equilibrate slab using NVT with static layers
 - No volume rescaling
- 4 Verify slab stability in NVE
- 5 Determine 'perfect' lattice positions using NVE
- 6 Generate surface trace

Computational details - Slab generation

1 Equilibrate bulk using NVT (Velocity-Verlet)

- Berendsen or Langevin thermostat
- 5 fs stepsize
- Lattice constant from many bulk relaxations
- 2 Verify bulk stability in NVE (Bulirsch-Stoer)
- 3 Equilibrate slab using NVT with static layers
 - No volume rescaling
- 4 Verify slab stability in NVE
- 5 Determine 'perfect' lattice positions using NVE
- 6 Generate surface trace

Computational details - Slab generation

1 Equilibrate bulk using NVT (Velocity-Verlet)

- Berendsen or Langevin thermostat
- 5 fs stepsize
- Lattice constant from many bulk relaxations
- 2 Verify bulk stability in NVE (Bulirsch-Stoer)
- 3 Equilibrate slab using NVT with static layers
 - No volume rescaling
- 4 Verify slab stability in NVE
- 5 Determine 'perfect' lattice positions using NVE
- 6 Generate surface trace

Computational details - Slab generation

1 Equilibrate bulk using NVT (Velocity-Verlet)

- Berendsen or Langevin thermostat
- 5 fs stepsize
- Lattice constant from many bulk relaxations
- 2 Verify bulk stability in NVE (Bulirsch-Stoer)
- 3 Equilibrate slab using NVT with static layers
 - No volume rescaling
- 4 Verify slab stability in NVE
- 5 Determine 'perfect' lattice positions using NVE
- 6 Generate surface trace

Computational details - Slab generation

1 Equilibrate bulk using NVT (Velocity-Verlet)

- Berendsen or Langevin thermostat
- 5 fs stepsize
- Lattice constant from many bulk relaxations
- 2 Verify bulk stability in NVE (Bulirsch-Stoer)
- 3 Equilibrate slab using NVT with static layers
 - No volume rescaling
- 4 Verify slab stability in NVE
- 5 Determine 'perfect' lattice positions using NVE
- 6 Generate surface trace

Computational details - Surface slabs

- Copper in bulk and (111) surface
- Supercell of 7x7x7 atoms
- Lowest 3 atom layers static for surfaces
 - In bulk configuration from NVE dynamics
- Periodic boundaries for the x- and y-directions
- Surface configurations from snapshots of NVE dynamics

X and Y

24/24

-1.5 -1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 Displacement (Bohr)

Universiteit Leiden

・ロト・西ト・ヨト・ヨー うへぐ

24/24

Time-of-Flight spectra

Time-of-Flight spectra

Smits & Somers, 2021

・ロット語・ (明・ (明・ (日・

^{24/24}

Split-Operator Method o
Old Surface Generation
Static Corrugation Model
OD
Diput parameters
o
Diput parameters
OD
Diput parameters
Diput parameters
Diput parameters
Diput parameters
Diput parameters
Diput parameters
OD
Diput parameters
Diput parameters
OD
Diput parameters
Diput parameters
Diput parameters
Diput parameters
Diput parameters
OD
Diput parameters
Diput p

- Some minor improvement when using different binning techniques.
- No adiabatic correction! (yet??)

Universite Leiden

クへで 24/24