Supporting information to:

Dynamics of H_2 dissociation on the closepacked (111) surface of the noblest metal: $H_2 + Au(111)$

Mark Wijzenbroek, Darcey Helstone, Jörg Meyer, and Geert-Jan Kroes*

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands *Corresponding author

Functional	Lattice constant (Å)
PBE	4.1816
SRP48	4.2022
RPBE	4.2258
PBE-vdW-DF	4.2286
optPBE-vdW-DF	4.1967
RPBE-vdW-DF	4.2747

Table S1. Lattice constants for fcc Au metal computed for the six density functionals employed in this work.

Table S2. The H-H distance r_b and the H₂-surface distance Z_b at the minimum barrier geometry, and the minimum barrier height E_b are provided for configurations in which H₂ is parallel to the Au(111) surface (θ =90°). Results are provided for the PBE and for the RPBE functional.

	PBE			RPBE		
Configuration	r_b (Å)	Z_b (Å)	E_b (eV)	r_b (Å)	Z_b (Å)	$E_b ({ m eV})$
top, φ=0°	1.504	1.468	1.237	1.497	1.472	1.538
bridge, φ=0°	1.516	1.485	1.175	1.526	1.484	1.465
bridge, φ=90°	1.187	1.096	1.245	1.187	1.077	1.579
hcp, ф=0°	1.354	1.239	1.220	1.364	1.236	1.530
t2h, φ=120°	1.335	1.304	1.260	1.373	1.298	1.569
t2h, φ=30°	1.685	1.549	1.637	1.692	1.555	1.941

Table S3. The H-H distance r_b and the H₂-surface distance Z_b at the minimum barrier geometry, and the minimum barrier height E_b are provided for configurations in which H₂ is parallel to the Au(111) surface (θ =90°). Results are provided for the PBE-vdW-DF and for the RPBE-vdW-DF functional.

	PBE-vdW-DF			RPBE-vdW-DF		
Configuration	r_b (Å)	Z_b (Å)	$E_b (\mathrm{eV})$	r_b (Å)	Z_b (Å)	$E_b ({ m eV})$
top, φ=0°	1.466	1.485	1.403	1.479	1.485	1.691
bridge, φ=0°	1.419	1.479	1.292	1.416	1.476	1.566
bridge, φ=90°	1.210	1.084	1.546	1.221	1.059	1.864
hcp, ф=0°	1.309	1.252	1.423	1.314	1.244	1.719
t2h, φ=120°	1.365	1.310	1.471	1.379	1.301	1.773
t2h, φ=30°	1.655	1.566	1.787	1.657	1.572	2.077

ν	J	A	<i>E</i> ['] ₀ (eV)	W' (eV)	<i>E</i> ₀ '' (eV)	<i>W</i> ″ (eV)
0	0	0.870012	1.253869	0.306219	1.141940	0.045706
0	1	0.876761	1.256545	0.298814	1.140102	0.047135
0	2	0.863459	1.245456	0.281118	1.133006	0.047119
0	3	0.881756	1.214835	0.325776	1.146103	0.054658
0	4	0.877897	1.192613	0.311916	1.135634	0.061577
0	5	0.861885	1.190620	0.287415	1.087751	0.069477
0	6	0.880247	1.170150	0.312985	1.042392	0.079144
0	7	0.858403	1.144569	0.290236	0.955146	0.076027
0	8	0.860402	1.105053	0.292517	0.875179	0.063638
0	9	0.867933	1.043478	0.316497	0.836307	0.066705
0	10	0.865676	0.967442	0.329360	0.779495	0.073836
0	11	0.879288	0.907849	0.343597	0.709849	0.059739
1	0	0.885275	0.862460	0.393213	0.764827	0.055309
1	1	0.868835	0.863494	0.345541	0.755142	0.054931
1	2	0.868954	0.815167	0.355915	0.757687	0.056321
1	3	0.877642	0.761554	0.386768	0.761320	0.051578
1	4	0.879837	0.734213	0.371086	0.759893	0.053191
1	5	0.871249	0.743341	0.337645	0.738880	0.061160
1	6	0.892346	0.714770	0.374096	0.722102	0.068884
1	7	0.890422	0.671823	0.381929	0.699879	0.076724

Table S4: Fit parameters for reaction probabilities of H₂, initially in the (ν , J) state, dissociating on Au(111) using the SRP48 functional.

ν	J	A	<i>E</i> ₀ ' (eV)	<i>W</i> ′ (eV)	<i>E</i> ₀ '' (eV)	<i>W</i> ″ (eV)
0	0	0.870389	1.321275	0.294550	1.214260	0.047377
0	1	0.871409	1.341825	0.278302	1.200420	0.039741
0	2	0.871218	1.310082	0.288646	1.219757	0.047986
0	3	0.856287	1.317178	0.263617	1.200524	0.042454
0	4	0.865550	1.302656	0.282573	1.207599	0.051395
0	5	0.867980	1.293206	0.287584	1.192862	0.050691
0	6	0.879706	1.267753	0.308803	1.197513	0.063177
0	7	0.870682	1.269528	0.288196	1.157517	0.067411
0	8	0.857451	1.262592	0.271441	1.095560	0.072422
0	9	0.860878	1.244761	0.285854	1.059041	0.068354
0	10	0.851979	1.212845	0.276998	1.000280	0.074887
0	11	0.850149	1.190772	0.275678	0.933009	0.051231
0	12	0.871520	1.151762	0.307530	0.916312	0.074698
0	13	0.870030	1.100590	0.317376	0.875442	0.064622
0	14	0.868342	1.049376	0.327227	0.837192	0.072489
0	15	0.864690	1.012599	0.311715	0.765274	0.050212
1	0	0.887632	1.016163	0.372949	0.916685	0.051205
1	1	0.880248	1.030085	0.346263	0.911882	0.052723
1	2	0.863760	0.993398	0.331061	0.914293	0.056063
1	3	0.869220	0.977994	0.340209	0.915855	0.054613
1	4	0.871370	0.965237	0.344695	0.916874	0.053261
1	5	0.875110	0.927704	0.359907	0.920550	0.054556
1	6	0.884060	0.904298	0.375043	0.922172	0.059830
1	7	0.873070	0.909959	0.343103	0.904857	0.067419
1	8	0.870317	0.918987	0.325705	0.865215	0.069894
1	9	0.870734	0.903785	0.332418	0.837490	0.073072
1	10	0.875389	0.887069	0.334409	0.807194	0.075738
1	11	0.870449	0.876340	0.325825	0.750258	0.071364
1	12	0.876758	0.861259	0.327789	0.713385	0.063240
2	0	0.883268	0.784284	0.398970	0.682225	0.056449
2	1	0.870290	0.799398	0.357590	0.675317	0.056087
2	2	0.865609	0.733084	0.368954	0.684361	0.065957
2	3	0.869035	0.710964	0.370001	0.677947	0.058995
2	4	0.879857	0.673082	0.395559	0.676766	0.052908
2	5	0.871037	0.651841	0.369843	0.667677	0.047994
2	6	0.881877	0.613118	0.389527	0.674841	0.052354
2	7	0.882064	0.599147	0.384069	0.676082	0.061625
2	8	0.879582	0.615587	0.356825	0.650582	0.061062
2	9	0.883183	0.599303	0.364607	0.639058	0.067085
2	10	0.884770	0.600416	0.352755	0.613337	0.072296

Table S5: Fit parameters for reaction probabilities of D₂, initially in the (ν , *J*) state, dissociating on Au(111) using the SRP48 functional.

ν	J	A	E'_{0} (eV)	W' (eV)	<i>E</i> ₀ " (eV)	W" (eV)
0	0	0.896350	1.284168	0.337951	1.200016	0.058846
0	1	0.874442	1.305263	0.280712	1.177880	0.052073
0	2	0.869986	1.290157	0.279372	1.183035	0.057697
0	3	0.887680	1.284172	0.311082	1.184780	0.058379
0	4	0.885778	1.247035	0.316416	1.177520	0.069912
0	5	0.858358	1.243134	0.278152	1.113651	0.088465
0	6	0.887247	1.216230	0.323547	1.080359	0.085884
0	7	0.865953	1.173121	0.313751	1.017383	0.089853
0	8	0.857841	1.146752	0.290674	0.895431	0.069768
0	9	0.872632	1.088120	0.320857	0.862465	0.064253
0	10	0.875232	1.004701	0.340977	0.808915	0.074876
0	11	0.886937	0.936760	0.354121	0.735466	0.068896
1	0	0.889607	0.870535	0.392887	0.773238	0.052376
1	1	0.878484	0.875061	0.351059	0.772404	0.055917
1	2	0.886670	0.837804	0.371294	0.784504	0.059173
1	3	0.895679	0.801331	0.400520	0.789333	0.055496
1	4	0.884933	0.788623	0.363541	0.781902	0.054791
1	5	0.884392	0.780218	0.354049	0.764181	0.067233
1	6	0.900018	0.773275	0.371327	0.733302	0.064776
1	7	0.897907	0.731495	0.382737	0.701558	0.069264

Table S6: Fit parameters for reaction probabilities of H₂, initially in the (ν , J) state, dissociating on Au(111) using the optPBE-vdW-DF functional.

ν	J	A	<i>E</i> ₀ ' (eV)	<i>W</i> ′ (eV)	<i>E</i> ₀ '' (eV)	<i>W</i> ″ (eV)
0	0	0.891926	1.362795	0.313404	1.278059	0.055873
0	1	0.859576	1.386019	0.258786	1.245960	0.052340
0	2	0.868443	1.367624	0.266887	1.263530	0.052609
0	3	0.854596	1.375831	0.246989	1.241193	0.048246
0	4	0.889121	1.348647	0.307133	1.278259	0.063623
0	5	0.858925	1.356840	0.262220	1.230237	0.064457
0	6	0.874995	1.330532	0.290633	1.236221	0.073797
0	7	0.878090	1.306793	0.299693	1.222614	0.083015
0	8	0.865349	1.306733	0.282502	1.145406	0.089854
0	9	0.866066	1.288303	0.296045	1.106622	0.083825
0	10	0.848217	1.258105	0.277898	1.029939	0.081015
0	11	0.852353	1.221391	0.288777	0.971822	0.095712
0	12	0.873706	1.200226	0.307221	0.943241	0.066873
0	13	0.876437	1.149221	0.322987	0.903921	0.066144
0	14	0.868226	1.098453	0.321534	0.852171	0.060338
0	15	0.877005	1.037098	0.338862	0.811876	0.077338
1	0	0.886544	1.044776	0.360715	0.933175	0.053757
1	1	0.878302	1.060020	0.333139	0.928228	0.052441
1	2	0.869207	1.026126	0.327198	0.940519	0.058783
1	3	0.876012	1.025173	0.330742	0.944035	0.055598
1	4	0.881098	1.011718	0.344881	0.950151	0.058195
1	5	0.874947	1.003014	0.331971	0.936137	0.054959
1	6	0.882523	0.988530	0.340778	0.937235	0.060919
1	7	0.882005	0.968435	0.341753	0.929589	0.073297
1	8	0.871488	0.994280	0.305421	0.865145	0.067211
1	9	0.885890	0.948179	0.352534	0.868056	0.073739
1	10	0.881612	0.924917	0.346499	0.831161	0.079287
1	11	0.878130	0.904109	0.343514	0.785111	0.077031
1	12	0.885591	0.886947	0.347909	0.740046	0.070972
2	0	0.892408	0.775094	0.412534	0.690710	0.052611
2	1	0.878367	0.787965	0.371923	0.688210	0.055629
2	2	0.881053	0.734321	0.387890	0.700368	0.063472
2	3	0.888064	0.722451	0.392939	0.699646	0.060011
2	4	0.894359	0.704588	0.404573	0.697590	0.056293
2	5	0.881731	0.676973	0.382999	0.695313	0.052401
2	6	0.891506	0.660282	0.392360	0.697675	0.055051
2	7	0.884033	0.673522	0.358256	0.683659	0.057354
2	8	0.891404	0.663823	0.365838	0.664207	0.059542
2	9	0.897235	0.631378	0.390281	0.651365	0.065639
2	10	0.892889	0.635790	0.368672	0.621258	0.065395

Table S7: Fit parameters for reaction probabilities of D_2 , initially in the (ν , J) state, dissociating on Au(111) using the optPBE-vdW-DF functional.

ν	J	A	E'_{0} (eV)	W' (eV)	<i>E</i> ₀ " (eV)	<i>W</i> ″ (eV)
0	0	0.878787	1.105231	0.305696	1.003351	0.051525
0	1	0.884582	1.095763	0.300132	1.004770	0.058829
0	2	0.882615	1.085142	0.295785	0.997077	0.051367
0	3	0.889102	1.042242	0.330393	1.010367	0.057084
0	4	0.883310	1.021961	0.313555	1.000979	0.062815
0	5	0.879376	0.999165	0.319516	0.982633	0.078261
0	6	0.893024	1.010810	0.320107	0.918995	0.086563
0	7	0.887247	0.965050	0.332691	0.870308	0.091963
0	8	0.881422	0.956005	0.316998	0.753862	0.071654
0	9	0.884219	0.879531	0.347640	0.729736	0.081536
0	10	0.880604	0.812077	0.350581	0.664246	0.085530
0	11	0.885713	0.766036	0.340232	0.568254	0.069748
1	0	0.872506	0.784093	0.329462	0.590307	0.027351
1	1	0.872660	0.746200	0.327576	0.604846	0.062241
1	2	0.878417	0.673243	0.360466	0.627346	0.057370
1	3	0.886538	0.621169	0.380887	0.622854	0.047166
1	4	0.888531	0.577821	0.374144	0.629648	0.058013
1	5	0.883977	0.586598	0.349855	0.615281	0.067941
1	6	0.894908	0.592015	0.348946	0.588129	0.075427
1	7	0.891743	0.600938	0.329269	0.533371	0.075492

Table S8: Fit parameters for reaction probabilities of H₂, initially in the (ν , J) state, dissociating on Au(111) using the PBE functional.

ν	J	A	<i>E</i> ₀ ' (eV)	<i>W</i> ′ (eV)	<i>E</i> ₀ '' (eV)	<i>W</i> ″ (eV)
0	0	0.874062	1.169241	0.289206	1.073495	0.049491
0	1	0.891394	1.162141	0.311043	1.081281	0.055213
0	2	0.877136	1.151377	0.283578	1.070922	0.052769
0	3	0.877980	1.151216	0.280643	1.066304	0.048492
0	4	0.879284	1.141464	0.285479	1.069009	0.049689
0	5	0.881715	1.108473	0.306417	1.068025	0.054859
0	6	0.894906	1.069617	0.341199	1.078295	0.064614
0	7	0.878335	1.084616	0.300400	1.044422	0.075109
0	8	0.872986	1.099744	0.282276	0.975148	0.077372
0	9	0.883835	1.076881	0.309241	0.949141	0.082416
0	10	0.885625	1.036169	0.321230	0.916948	0.094211
0	11	0.876469	1.025277	0.310774	0.833401	0.087754
0	12	0.893749	0.986370	0.345001	0.815854	0.088314
0	13	0.887852	0.931168	0.352634	0.778630	0.083412
0	14	0.885193	0.871840	0.361768	0.746128	0.098527
0	15	0.875453	0.869675	0.315507	0.630902	0.051521
1	0	0.881378	0.900350	0.340402	0.758960	0.064016
1	1	0.880721	0.894485	0.333288	0.769000	0.072926
1	2	0.870294	0.850170	0.326344	0.778455	0.065264
1	3	0.872456	0.848353	0.320767	0.767351	0.051289
1	4	0.877438	0.824773	0.331736	0.768675	0.052068
1	5	0.881839	0.776515	0.355015	0.780470	0.058442
1	6	0.895821	0.719483	0.397157	0.795971	0.068370
1	7	0.886744	0.717878	0.371080	0.789106	0.076957
1	8	0.882181	0.745492	0.341629	0.750646	0.082014
1	9	0.885852	0.742730	0.345057	0.722137	0.088198
1	10	0.891705	0.737673	0.343632	0.682735	0.089914
1	11	0.885794	0.747888	0.330355	0.617792	0.070257
1	12	0.900086	0.696351	0.373439	0.613361	0.078017
2	0	0.875309	0.707282	0.344894	0.527369	0.026972
2	1	0.868451	0.706875	0.321731	0.521034	0.037567
2	2	0.870158	0.615938	0.354237	0.547183	0.067665
2	3	0.881401	0.564728	0.383776	0.551890	0.059508
2	4	0.888254	0.521108	0.401668	0.545200	0.048434
2	5	0.884696	0.495998	0.386552	0.537914	0.045092
2	6	0.892387	0.459587	0.399045	0.549433	0.054309
2	7	0.888101	0.465463	0.371961	0.545704	0.062101
2	8	0.887662	0.482489	0.348853	0.525678	0.069714
2	9	0.892603	0.487182	0.347388	0.506468	0.072300
2	10	0.891131	0.524783	0.315218	0.457348	0.065882

Table S9: Fit parameters for reaction probabilities of D_2 , initially in the (ν , J) state, dissociating on Au(111) using the PBE functional.